Leçon 156: Exponentielle de matrices. Application.

RM 2022-2023

Soit \mathbb{K} le corps des réels ou des complexes. Soit $n \in \mathbb{N}^*$ et on considère $\|.\|$ une norme d'algèbre sur $M_n(\mathbb{K})$ sauf mention contraire.

1 Exponentielle matricielle

1.1 Séries matricielles

Définition 1: Pour toute matrice $A \in M_n(\mathbb{K})$, on appelle rayon spectrale la quantité $\rho(A) = \max_{\lambda \in Sp(A)} |\lambda|$ ou Sp(A) est l'ensemble des valeurs propres complexes de A.

Proposition 2: Pour tout $k \in \mathbb{N}$, on a que $\rho(A^k) = \rho(A)^k$ et $\rho(A) \leq ||A||$ pour tout $A \in M_n(\mathbb{K})$.

Lemme 3: Pour tout $\varepsilon > 0$, il existe une norme matricielle induite par une norme vectorielle telle que $||A|| \le \rho(A) + \varepsilon$.

Lemme~4~:~ Toute norme matricielle induite par une norme vectorielle est une norme d'algèbre.

Théorème 5: Soit $\sum a_k z^k$ une série entière à coefficients dans \mathbb{K} de rayon de convergence R > 0. Si $A \in M_n(\mathbb{K})$ est telle que $\rho(A) < R$, alors la série de terme générale $a_k A^k$ est absolument convergente et si $\rho(A) > R$, alors elle diverge.

Théorème 6: Si on note $f(A) = \sum_{k=0}^{+\infty} a_k A^k$ pour $\rho(A) < R$, alors f(A) est un polynôme en A.

Exemple 7: Si $\rho(A) < 1$, alors la série $\sum_{k=0}^{+\infty} A^k$ est convergente et on a $(I_n - A)^{-1} = \sum_{k=0}^{+\infty} A^k$.

Théorème 8: Soient $\sum a_k z^k$ une séries entières à coefficients dans \mathbb{K} de rayon de convergence $R>0,\ f$ sa somme et $A\in M_n(\mathbb{K})$.

- Si $\rho(A) = 0$, la fonction $\varphi : t \mapsto f(tA)$ est alors de classe \mathcal{C}^{∞} sur \mathbb{R} .
- Si $0 < \rho(A) < R$, elle est de classe S^{∞} sur $] R/\rho(A), R/\rho(A)[$.

Dans tous les cas, sa dérivée est $\varphi'(t) = Af'(tA)$, ou $f'(z) = \sum_{k=1}^{+\infty} ka_k z^{k-1}$.

1.2 Exponentielle d'une matrice

Définition 9: On définit l'exponentielle d'une matrice $A \in M_n(\mathbb{K})$ par $\exp(A) = \sum_{k=0}^{+\infty} A^k/k!$.

Remarque 10: Cette série est bien convergente car la série converge absolument dans $M_n(\mathbb{K})$ qui est un espace vectoriel normé de dimension finie, donc un Banach.

Exemple 11: Si A est une matrice nilpotente d'indice $q \geq 1$, on a alors que $\exp(A) = \sum_{k=0}^{q-1} A^k/k!$.

Corollaire 12 : La matrice $\exp(A)$ est un polynôme en A et donc commute avec A.

Proposition 13: Si $A = diag(\lambda_1, ..., \lambda_n)$, on a alors $\exp(A) = diag(e^{\lambda_1}, ..., e^{\lambda_n})$.

Proposition 14: Si A est B sont semblables dans $M_n(\mathbb{K})$, il en est de même pour $\exp(A)$ et $\exp(B)$. C'est-à-dire si $B = PAP^{-1}$ avec $P \in Gl_n(\mathbb{K})$, alors $\exp(B) = P\exp(A)P^{-1}$.

Corollaire 15: Si A est diagonalisable de valeurs propres $\lambda_1, ..., \lambda_n$, alors $\exp(A)$ est diagonalisable de valeurs propres $e^{\lambda_1}, ..., e^{\lambda_n}$.

Proposition 16: Pour toute matrice $A \in M_n(\mathbb{K})$, la fonction $\varphi : t \mapsto \exp(tA)$ est de classe \mathcal{C}^{∞} sur \mathbb{R} de dérivée $\varphi' : \mapsto A \exp(tA) = \exp(tA)A$.

Théorème 17: Pour toute matrice $A \in M_n(\mathbb{K})$, on a $\det(\exp(A)) = e^{Tr(A)}$ et $\exp(A)$ est inversible.

Remarque 18: Avec $\mathbb{K} = \mathbb{R}$, on a donc que le déterminant de $\exp(A)$ est strictement positif, donc exp n'est surjectif sur $Gl_n(\mathbb{R})$.

Théorème 19: La matrice $\exp(A)$ est inversible d'inverse $\exp(-A)$.

Théorème 20 : Soient A, B dans $M_n(\mathbb{K})$. Les matrices A et B commutent si et seulement si on a $\exp(t(A+B)) = \exp(tA) \exp(TB)$ pour tout réel t.

1.3 Calcul de l'exponentielle grâce à la décomposition de jordan

Définition 21: Supposons que le polynôme caractéristique de $A \in M_n(\mathbb{K})$ soit scindé sur \mathbb{K} : $P_A(X) = (X - \lambda_1)^{\alpha_1}...(X - \lambda_s)^{\alpha_s}$. Alors pour tout $i \in [1; s]$, le sous espace vectoriel $N_i = \ker(A - \lambda_i Id)^{\alpha_i}$ s'appelle le sous-espace caractéristique de u associé à la valeur propre λ_i .

Remarque 22 : L'ensemble N_i est stable par u (ou u est l'endomorphisme associé à A dans une base B).

Théorème (**Décomposition de Jordan**) 23 : Si le polynôme caractéristique de A est scindé, alors il existe un unique couple (D, N) dans $M_n(\mathbb{K})$ tel que :

- i) D est diagonalisable et N est nilpotente.
- ii) A = D + N et DN = ND.

De plus, D et N sont des polynômes en A.

Remarque 24 : Si P_A n'est pas scindé, on peut alors remplacer D par un une matrice représentant un endomorphisme semi-simple.

Exemple 25: La décomposition de Jordan de la matrice $A=\begin{pmatrix}1&1\\0&2\end{pmatrix}$ est $A=\begin{pmatrix}1&1\\0&2\end{pmatrix}+\begin{pmatrix}0&0\\0&0\end{pmatrix}$.

Application 26 : On peut calculer plus facilement l'exponentielle d'une matrice grâce à la décomposition de Jordan. En effet, soit A=D+N et $P\in Gl_n(\mathbb{K})$ tel que $P^{-1}DP$ soit diagonale. Alors comme D et N commute, on a $\exp(A)=\exp(D)\exp(N)$. Avec q l'indice de nilpotence de N et $P^{-1}DP=diag(\lambda_1,...,\lambda_n)$, on obtient :

$$\exp(A) = P \begin{pmatrix} e^{\lambda_1} & & (0) \\ & \ddots & \\ (0) & & e^{\lambda_n} \end{pmatrix} P^{-1} \sum_{k=0}^{q-1} \frac{N^k}{k!}.$$

La décomposition de Jordan de $\exp(A)$ est alors $\exp(A) = \exp(D) + \exp(D)(\exp(N) - I_n)$.

Remarque 27 : Attention, il n'est pas pour autant facile de calculer l'exponentielle d'une matrice quelconque car il peut être difficile de trouver sa décomposition de Jordan.

Corollaire 28: Soit $A \in M_n(\mathbb{K})$ telle que son polynôme caractéristique soit scindé sur \mathbb{K} . Une telle matrice est diagonalisable si et seulement si $\exp(A)$ est diagonalisable.

2 Propriétés de l'exponentielle matricielle

2.1 Régularité

Proposition 29: La fonction exp est continue de $M_n(\mathbb{K})$ dans $M_n(\mathbb{K})$.

Théorème 30: La fonction exp est de classe \mathcal{C}^1 sur $M_n(K)$ avec, pour toutes matrices X, H dans $M_n(K)$:

$$d_X \exp(H) = \sum_{k=1}^{+\infty} \frac{1}{k!} \left(\sum_{\substack{0 \le i, j \le k-1 \ i+j=k-1}} X^i H X^j \right).$$

Exemple 31: On a donc que exp est différentiable en 0 et $d_0 \exp = I_d$.

2.2 Surjectivité et injectivité de l'exponentielle matricielle

Définition 32: On note $\mathcal{N}_n(\mathbb{C})$ les matrices nilpotente de $M_n(\mathbb{C})$ et $\mathcal{L}_n(\mathbb{C})$ les matrices unipotentes de $M_n(\mathbb{C})$ (ie $A-I_n$ nilpotente).

Définition 33: Si $\rho(A) < 1$ pour $A \in M_n(\mathbb{C})$, on définit la fonction logarithme matricielle par $\ln(I_n + A) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} A^k$ et $\ln(I_n + A)$ est un polynôme en A. **Exemple 34**: On a $\ln(I_n) = 0$.

Lemme 35: Pour $A \in M_n(\mathbb{C})$ telle que $\rho(A) < 1$, on a $\exp(\ln(I_n + A)) = I_n + A$.

Lemme 36: Pour tout matrice $A \in \mathcal{N}_n(\mathbb{C})$, on a $\exp(A) \in \mathcal{L}_n(\mathbb{C})$ et $\ln(\exp(tA)) = tA$ pour tout réel t.

Théorème 37: L'exponentielle matricielle réalise une bijection de $\mathcal{N}_n(\mathbb{C})$ sur $\mathcal{L}_n(\mathbb{C})$ d'inverse le logarithme matricielle.

Corollaire 38: Pour tout nombre complexe λ non nul et pour toute matrice $A \in \mathcal{N}_n(\mathbb{C})$, il existe une matrice $X \in M_n(\mathbb{C})$ telle que $\exp(X) = \lambda I_n + A$.

Lemme 39: Soit $A \in GL_n(\mathbb{C})$ une matrice diagonalisable. Il existe un polynôme $Q \in \mathbb{C}_{n-1}[X]$ tel que Q(A) soit diagonalisable et $\exp(Q(A)) = A$.

Théorème 40: Pour toute matrice $A \in GL_n(\mathbb{C})$, il existe un polynôme $Q \in \mathbb{C}[X]$ tel que $\exp(Q(A)) = A$. Autrement dit, l'exponentielle matricielle réalise une surjection de $M_n(\mathbb{C})$ sur $GL_n(\mathbb{C})$.

Corollaire 41: Soit p un entier naturelle non nul. Pour toute matrice $A \in GL_n(\mathbb{C})$, il existe une matrice $X \in GL_n(\mathbb{C})$ polynomial en A telle que $X^p = A$.

2.3 Deux homéomorphismes

Théorème 42 : L'application
$$\mu: O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) \to GL_n(\mathbb{R})$$

 $(O,S) \mapsto OS$

est un homéomorphisme.

Développement 43: L'application exp : $S_n(\mathbb{R}) \mapsto S_n^{++}(\mathbb{R})$ est un homéomorphisme.

Dev 1

3 Application aux équations différentielles

3.1 Système différentielle linéaire à coefficients constants

Proposition 44: Si $A \in M_N(\mathbb{K})$ est constante, alors une solution de y' = Ay est de la forme $y(t) = e^{tA}C$ où C est un vecteur constant de \mathbb{K}^N . Avec $y(t_0) = t_0$, on obtient la solution $y(t) = e^{(t-t_0)A}y_0$.

Exemple 45: La solution de
$$\begin{cases} x' = x + 2y \\ y' = 2x + y \end{cases}$$
 avec $x(1) = 2$ et $y(1) = 1$ est : $x(t) = 1/2(3e^{3(t-1)} + e^{-(t-1)}), \ y(t) = 1/2(3e^{3(t-1)} - e^{-(t-1)}).$

3.2 Une application sur l'équation de Sylvester

Développement 46: Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ deux matrices dont les valeurs propres sont de partie réelle strictement négative. Alors pour tout $C \in \mathcal{M}_n(\mathbb{C})$, l'équation AX + XB = C admet une unique solution X dans $\mathcal{M}_n(\mathbb{C})$.

Dev 2

Références:

- 1. Algèbre et géométrie Rombaldi
- 2. Algèbre Gourdon
- 3. Algèbre linéaire Grifone
- 4. H2G2 Caldero Germoni
- 5. Analyse Gourdon
- 6. Équations différentielles Berthelin